ОЦЕНКИ ВЛИЯНИЯ ЯРКОСТИ СВЕТОВЫХ ОБЪЕКТОВ И ФОНА НА УРОВНИ СВЕТОВОСПРИЯТИЯ

Ниже рассмотрены изменения показателей яркости световых объектов и яркости фона по стандарту ISO 12866:1999 (2008) «Приборы офтальмологические – периметры» в автоматических периметрах и их влияние на результаты периметрических исследований.

По ISO пределы нормируемых уровней яркости \pm Lsti предъявляемых световых объектов должны лежать в пределах +25% / -20% от уровня яркости предъявляемых световых объектов Lsti ($\pm \Delta L$ sti = +25% / -20% от уровня яркости Lsti).

Среди допускаемых отклонений нет таких, которые бы доминировали над остальными.

В этом случае (по Ляпунову) предполагаем, что сумма случайных отклонений распределена нормально и не имеет значения каковы функции распределения слагаемых.

Для оценки отклонений яркости по абсолютной величине рассматриваем в каждом из поддиапазонов шкалы интегралы вероятности $P(-\sigma < \delta < +\sigma)$ при $\psi(1) = 0.683$ и $P(-2\sigma < \delta < +2\sigma)$ при $\psi(2) = 0.955$.

Уровень $\psi(1) = 0.683$ указывает, что случайное отклонение по абсолютной величине не превышает 68.3% среднего отклонения яркости светового объекта.

Вероятность того, что случайное отклонение не превышает удвоенного среднего **95.5%**. Введём следующие характеристики и обозначения.

 $L_{\Gamma-H} = 10000 \text{ Asb; } Lst_{max1} = L_{\Gamma-H} / \pi = 3183 \text{ кд/м}^2 -$ наибольший уровень яркости шкал периметров типа «Гольдмана», «Хемфри» и пр.

Lst max2 = **1006.6** кд/м² — наибольший уровень яркости шкалы периметров типа «ОКТО-ПУС» фирм «Хааг-Стрейт» и «Интерзиг», «ПЕРИКОМ» СКТБ ОП ОПТИМЕД и др.

Lst $max3 = 318 \text{ кд/m}^2$ — наибольший уровень яркости шкалы периметров «Окулюс» и др.

Lconst1= 10 кд/м^2 –номинальный устанавливаемый фотопический уровень яркости фона.

Lconst2= 1.0 кд/м² –номинальный устанавливаемый мезопический уровень яркости фона.

- $+ \Delta L const = + 25\% \ L const -$ верхний допускаемый предел отклонения установленной яркости фона (фотопического или мезопического уровня) по ISO.
- $-\Delta L const = -20\% \ L const -$ нижний допускаемый предел отклонения установленной яркости фона (фотопического или мезопического уровня) по ISO.
- $+ \Delta Lst \ i = +25\% \ Lst \ i$ верхний предел допускаемого отклонения яркости предъявляемого светового объекта по ISO.
- $-\Delta Lst \ i = -20\% \ Lst \ i -$ нижний предел допускаемого отклонения яркости предъявляемого светового объекта по ISO.

Клиническая оценка результатов периметрии осуществляется в дБ.

1. Фотопический уровень яркости фона

Номинальный фотопический уровень фоновой яркости в зарубежных кинетических периметрах составляет Lconst=10 кд/м². Допускаемые отклонения яркости фона по ISO не должн превышать +25% / -20% от номинального уровня 10 кд/м², т.е. находиться в пределах 8.0 кд/м²...12.5 кд/м².

Используем далее для оценки периметрическую шкалу «ОКТОПУСА» (0 – 40) дБ.

Результаты рассматриваем относительно суммы наибольшего значения шкалы Lst max2 = Lst $max=1006.6 \ кд/м²$ и номинального фотопического уровня яркости фона Lconst = $10 \ \kappa д/m²$.

Для достижения **номинального** уровня пороговой оценки, соответствующей минимуму шк 40 дБ, необходимо установить дифференциальную яркость Lst i₌₄₀ — Lconst = 0.10 кд/м², где Lst i =10.10 кд/м², Lconst = 10.00 кд/м², Lst max= 1006.6 кд/м².

При указанных показателях уровень яркости Δ (д**Б**) = **40** д**Б** составит:

$$\Delta$$
 (μδ) = 10•lg (Lst max + Lconst) / (Lsti i=40 – Lconst) = 40 μδ.

Определим соответствие параметров на произвольно выбранных уровнях, например, 39 дБ, 33 дБ, 26 дБ, 19 дБ, 15 дБ, 11 дБ и др. градуировочной характеристики при отсутствии отклонений яркости светового объекта от номинального значения ($\pm \Delta Lst \ i = 0$) и отклонении фоновой яркости $\pm \Delta Lconst = 0$:

```
\Delta (\mu E) = 10 \cdot lg (Lst max + Lconst) / (Lst i - Lconst).
```

При Lconst = 10 кд/м² и Lst max = 1006.6 кд/м² достижения нижеприведённых уровней возможно при установке следующих значений яркости световых объектов:

Определим далее доверительные границы изменения световосприятия при различных значениях отклонений яркости световых объектов и фона $+ \Delta L const i$, $- \Delta L const i$, $- \Delta L st i$, допускаемых в ISO.

При оценках используем интегралы вероятности $\psi(1) = 0.683$ или $\psi(2) = 0.955$ и соответствующие им доверительных интервалы световосприятия.

1a) Уровень $\Delta = 39$ д**Б** (выбран ранее произвольно)

В соответствии со стандартом ISO, предельные значения отклонений +25%/-20% обозначим как + Δ Lst+25%, - Δ Lconst +25%, - Δ Lconst +25%, - Δ Lconst +25%.

Их значения составят:

```
Lst i=39 + \DeltaLst+25% = 12.66 κд/m<sup>2</sup>;
Lst i=39 - \DeltaLst -20% = 8.10 κд/m<sup>2</sup>;
Lconst + \DeltaLconst +25% = 12.50 κд/m<sup>2</sup>;
Lconst - \DeltaLconst -20% = 8.0 κπ/m<sup>2</sup>.
```

Оценку отклонений Δ (д**Б**) на всех уровнях выполним по формуле:

```
\Delta (\mu B) = 10 \cdot lg (Lst max + Lconst) / \{(Lst i \pm \Delta Lst i) - (Lconst \pm \Delta Lconst i)\}.
```

При указанных выше отклонениях доверительные границы световосприятия при $\psi(1) = 0.683 - (28.3...34.3)$ дБ, при $\psi(2) = 0.955 - (25.3...37.3)$ дБ.

При снижении отклонений до \pm 5% (+ Δ Lst+5%, - Δ Lst -5%, + Δ Lconst +5%, - Δ Lconst -5%), доверительные границы световосприятия при $\psi(1) = 0.683 - (33.2...36.4)$ дБ, при $\psi(2) = 0.955 - (31.6...38.0)$ дБ.

При дальнейшем снижении отклонений до \pm 2% (+ Δ Lst+2%, - Δ Lst -2%, + Δ Lconst +2%, - Δ Lconst -2%.), доверительные границы световосприятия при $\psi(1) = 0.683 - (36.5...38.9)$ дБ, при $\psi(2) = 0.955 - (35.3...40.0)$ дБ.

16) Уровень $\Delta = 33$ д**Б** (выбран ранее произвольно)

При установленных ISO пределах нормирования +25%/-20% имеют место границы световосприятия при $\psi(1) = 0.683 - (26.6...30.0)$ дБ, при $\psi(2) = 0.955 - (24.9...31.7)$ дБ.

При снижении отклонений до \pm 5% (+ Δ Lst+5%, $-\Delta$ Lst -5%, + Δ Lconst +5%, $-\Delta$ Lconst -5%.), границы световосприятия при $\psi(1)=0.683-(30...32.6)$ дБ, при $\psi(2)=0.955-(28.7...33.9)$ дБ.

При дальнейшем снижении отклонений до \pm 2% (+ Δ Lst+2%, - Δ Lst -2%, + Δ Lconst +2%, - Δ Lconst -2%.), границы световосприятия при ψ (1) = 0.683 - (32.3...33.5) дБ, при ψ (2) = 0.955 - (31.7...34.1) дБ.

1в) Уровень $\Delta = 26$ д**Б** (выбран ранее произвольно)

При установленных ISO пределах +25%/-20% имеют место границы световосприятия при $\psi(1) = 0.683 - (23.5...25.8)$ дБ, при $\psi(2) = 0.955 - (22.4...26.9)$ дБ.

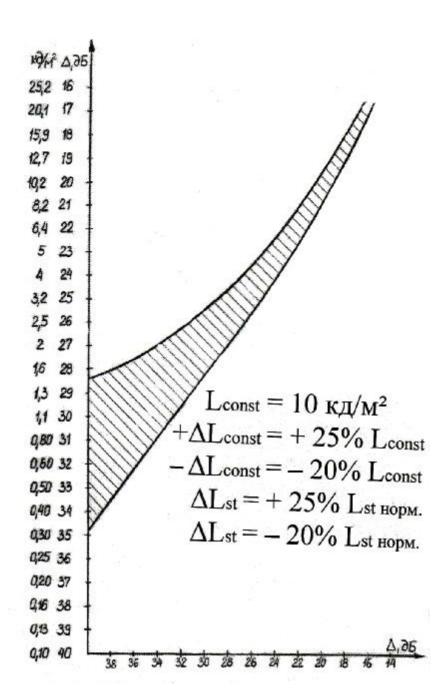
При снижении отклонений до \pm 5% (+ Δ Lst+5%, $-\Delta$ Lst -5%, + Δ Lconst +5%, $-\Delta$ Lconst -5%.), границы световосприятия при $\psi(1) = 0.683 - (25.7...26.8)$ дБ, при $\psi(2) = 0.955 - (25.3...27.3)$ дБ.

При дальнейшем снижении отклонений до \pm 2% (+ Δ Lst+2%, - Δ Lst -2%, + Δ Lconst +2%, - Δ Lconst -2%.), границы световосприятия при $\psi(1) = 0.683 - (25.8...26.3)$ дБ, при $\psi(2) = 0.955 - (25.6...26.5)$ дБ.

1г) **Уровень** $\Delta = 19$ д**Б** (выбран ранее произвольно)

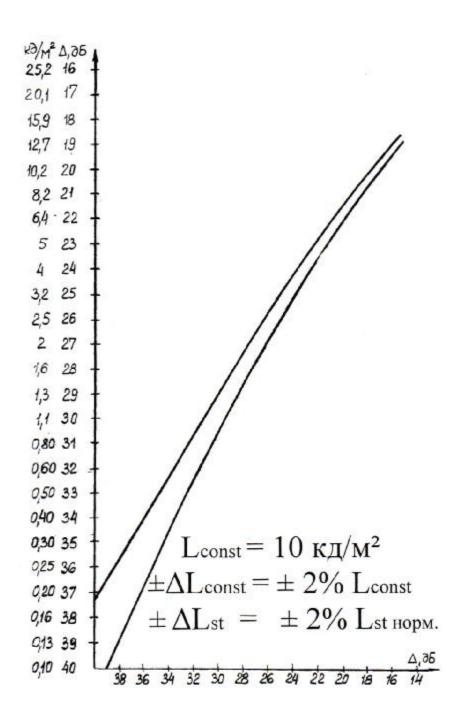
При установленных ISO пределах +25%/-20% имеют место границы световосприятия при $\psi(1) = 0.683 - (18.5...20)$ дБ, при $\psi(2) = 0.955 - (17.8...20.8)$ дБ.

При снижении отклонений до \pm 5% (+ Δ Lst+5%, - Δ Lst -5%, + Δ Lconst +5%, - Δ Lconst -5%), границы световосприятия при $\psi(1) = 0.683 - (18.8...19.2)$ дБ /при $\psi(2) = 0.955 - (18.6...19.4)$ дБ/.


1д) Уровень $\Delta = 15$ д**Б** (выбран ранее произвольно)

При установленном ISO нормировании +25%/-20% имеют место границы световосприятия при $\psi(1) = 0.683 - (14.6...15.6)$ дБ /при $\psi(2) = 0.955 - (14.1...16.1)$ дБ /.

1e) Уровень $\Delta = 11$ д**Б** (выбран ранее произвольно)


При установленном ISO нормировании +25%/-20% имеют место границы световосприятия при $\psi(1)=0.683-(10.7...11.5)$ дБ /при $\psi(2)=0.955-(10.3...10.9)$ дБ /.

Оценки доверительных границ световосприятия при различных изменениях яркости в кинетических периметрах с фотопическим уровнем яркости фона при $\psi(1) = 0.683$ приведены на рис. 1 и рис. 2.

На **рис.1** приведены границы изменения световосприятия при изменении яркости объектов и фона в соответствии с нормами ISO. На кривых видно, что нижняя граница может достигнуть наименьшей яркости только 35 дБ, а не номинального уровня 40 дБ. При исследовании не будет достигнут уровень световосприятия ниже $0.30~\text{кд/m}^2$. Вариабельность результатов высока. Например, если получен результат световосприятия объекта 34 дБ, то в ряду аналогичных приборов результат может находиться в границах от 31 дБ до 27 дБ (проведите ординату от цифры 34дБ на абсциссе до пересечения с кривыми и отсчитайте на оси ординат Δ (дБ) min 31 дБ и max 27дБ). Диапазон вариабельности - 4дБ. При увеличении яркости объектов вариабельность уменьшается. При уменьшении яркости для достижения пороговых уровней вариабельность существенно возрастает.

Нормативы ISO не обеспечивают достижение пороговых уровней.

На **рис.2** приведены границы изменения световосприятия при ужесточении установленных ISO предельных отклонений яркости объектов и фона с +25%/-20% до $.\pm 2\%$.

По изменениям границ световосприятия видно, что нижняя граница может достигать значение яркости на уровне 40 дБ.

При исследовании будет достигнута вариабельность световосприятия 3 дБ и менее.

При уменьшении яркости возможно достижение пороговых уровней, начиная с 40 дБ с вариабельностью менее 3 дБ.

Для бо́льших значений пороговых уровней вариабельность уменьшается до 2-х дБ.

2. Мезопический уровень яркости фона

Мезопический уровень фоновой яркости в **статических периметрах** предпочитают устанавливать на уровнях близких к **Lconst=1.0** кд/м². Допускаемые отклонения яркости фона по ISO не должны превышать +25% / -20% от номинального уровня 1.0 кд/м², т.е. находиться в пределах 0.8 кд/м²...1.25 кд/м².

Используем далее для оценки периметрическую шкалу «ОКТОПУСА» (0 – 40) дБ.

Определим соответствие параметров на произвольно выбранных ранее уровнях 39 дБ, 33 дБ, 26 дБ, 19 дБ, 15 дБ, 11 дБ и др. градуировочной характеристики при отсутствии отклонений яркости светового объекта от номинального значения ($\pm \Delta Lst \ i = 0$) и отклонении фоновой яркости $\pm \Delta Lconst = 0$:

$$\Delta (\mu E) = 10 \cdot \log (Lst \max + Lconst) / (Lst i - Lconst).$$

Определим соответствие яркости нормируемой градуировочной характеристики допускаемым стандартом ISO при отклонении яркости + Δ Lconst i., - Δ Lconst i., - Δ Lst i.

При значении интегралов вероятности $\psi(1) = 0.683$ или $\psi(2) = 0.955$ рассмотрим изменение доверительных границ нормируемых уровней яркости.

Результаты рассматриваем относительно суммы наибольшего значения шкалы Lst max2 =Lst $max = 1006.6 \ кд/м²$ и мезопического уровня яркости фона Lconst2 = 1.0 кд/м².

<u>2а</u>) **Уровень** $\Delta = 39$ д**Б** (выбран ранее произвольно)

Lst i=39=1.13 кд/м² (учтён мезопический уровень яркости фона Lconst2 = 1.0 кд/м²).

По ISO имеем аналогичные предельные уровни отклонений +25%/-20%: + Δ Lst+25%, $-\Delta$ Lst -20%, + Δ Lconst +25%, - Δ Lconst -20%:

```
Lst i=39 + \Delta Lst + 25\% = 1.41 \text{ kg/m}^2;

Lst i=39 - \Delta Lst + 20\% = 0.91 \text{ kg/m}^2;

Lconst + \Delta Lconst + 25\% = 1.25 \text{ kg/m}^2;

Lconst - \Delta Lconst + 20\% = 0.80 \text{ kg/m}^2.
```

Введём директивное ограничение нижнего уровня яркости фона **1.0 кд/м².** Оценку отклонений Δ (д**Б**) выполняем по приведённой выше формуле:

$$\Delta (\mu B) = 10 \cdot lg (Lst max \pm Lconst) / \{(Lst i \pm \Delta Lst i) - (Lconst \pm \Delta Lconst i)\}.$$

При установленных значениях яркости имеем границы световосприятия $\psi(1) = 0.683 - (36.2...37.4)$ дБ, при $\psi(2) = 0.955 - (35.7...38)$ дБ.

При снижении отклонений Lst i=39 до $\pm 5\%$ (+ Δ Lst+5%, $-\Delta$ Lst -5%) Lst i=39 + Δ Lst +5% = 1.18 кд/м² и Lst i=39 - Δ Lst -5% = 1.07 кд/м² и отклонениях мезопического уровня яркости фона Lconst + Δ Lconst +25% = 1.25 кд/м² и Lconst + Δ Lconst +0% = 1.0 кд/м², имеем границы изменения световосприятия при ψ (1) = 0.683 - (39...39.8) дБ.

26) Уровень $\Delta = 33$ д**Б** (выбран ранее произвольно)

Lst $i=33 = 1.5 \text{ кд/м}^2$ (учтён мезопический уровень яркости фона Lconst2 = 1.0 кд/м²).

По ISO предельные уровни отклонений +25%/-20%: $+\Delta Lst+25\%,-\Delta Lst-20\%,+\Delta Lconst+25\%,-\Delta Lconst+25\%$

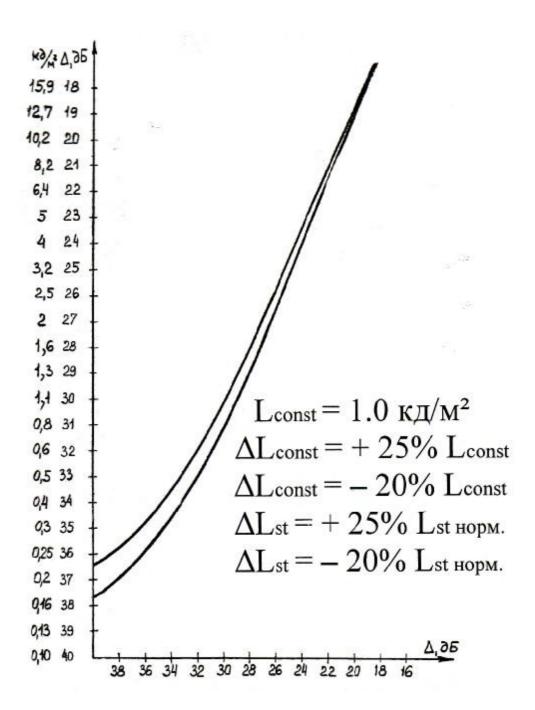
```
Lst i=33 + \Delta Lst + 25\% = 1.875 \text{ кд/м}^2;
Lst i=33 - \Delta Lst - 20\% = 1.20 \text{ кд/м}^2;
Lconst + \Delta Lconst + 25% = 1.25 кд/м<sup>2</sup>;
Lconst - \Delta Lconst - 20% = 0.80 кд/м<sup>2</sup>.
```

При установленных выше значениях, имеем границы световосприятия при $\psi(1) = 0.683 - (33...35)$ дБ, при $\psi(2) = 0.955 - (32...36)$ дБ.

При снижении отклонений Lst i=33 до $\pm 5\%$ (+ Δ Lst+5%, - Δ Lst -5%) яркости объектов Lst i=33 + Δ Lst +5% = 1.575 кд/м² и Lst i=33 - Δ Lst -5% = 1.425 кд/м² и мезопических уровнях яркости фона Lconst + Δ Lconst +25% = 1.25 кд/м² и Lconst + Δ Lconst +0% = 1.0 кд/м², имеем границы изменения световосприятия при ψ (1) = 0.683 - (33.8...34.8) дБ.

2в) **Уровень** $\Delta = 26$ д**Б** (выбран ранее произвольно)

Lst i=26=3.5 кд/м² учтён мезопический уровень яркости фона Lconst2 = 1.0 кд/м²).

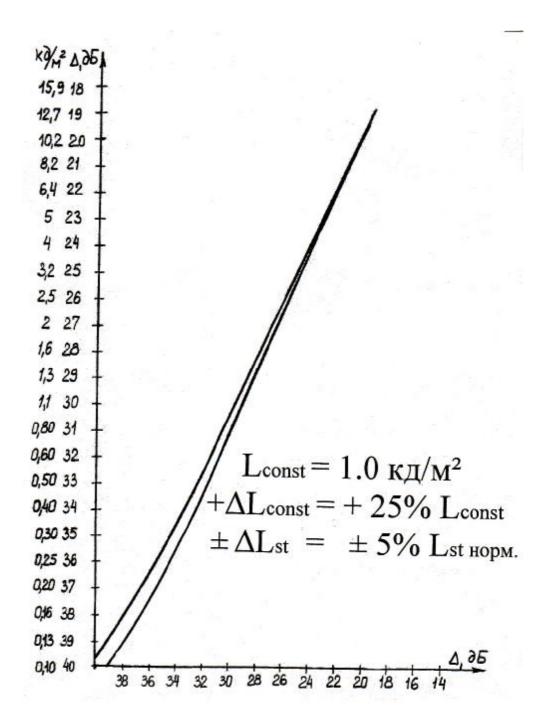

По ISO имеем стандартные уровни отклонений +25%/-20%: + Δ Lst+25%, $-\Delta$ Lst -20%, + Δ Lconst +25%, $-\Delta$ Lconst -20%:

```
Lst i=26 + \Delta Lst + 25\% = 4.375 \text{ кд/м}^2;
Lst i=26 - \Delta Lst - 20\% = 2.80 \text{ кд/м}^2;
Lconst + \Delta Lconst + 25\% = 1.25 \text{ кд/м}^2;
Lconst - \Delta Lconst - 20\% = 0.80 \text{ кд/м}^2.
```

При установленных выше значениях границ световосприятия при $\psi(1) = 0.683$ – (25.8...26.4) дБ, при $\psi(2) = 0.955$ – (25.5...26.6) дБ.

При снижении отклонений Lst i=26 до $\pm 5\%$ (+ Δ Lst i=26+5%, $-\Delta$ Lst i=26-5%) яркости объектов Lst i=26 + Δ Lst +5% = 3.675 кд/м² и Lst i=26 - Δ Lst -5% = 3.325 кд/м² и мезопических уровнях яркости фона Lconst + Δ Lconst +25% = 1.25 кд/м² и Lconst + Δ Lconst +0% = 1.0 кд/м², имеем границы световосприятия при ψ (1) = 0.683 - (26.1...26.3) дБ /при ψ (2) = 0.955 - (26.0...26.4) дБ/.

Оценки доверительных границ световосприятия при различных изменениях яркости в **статических** периметрах с **мезопическим** уровнем яркости фона при $\psi(1) = 0.683$ риведены **на рис. 3 и рис. 4.**



На **рис.3** приведены границы изменения световосприятия при изменении яркости объектов и мезопического фона в соответствии с нормами ISO.

На кривых видно, что нижняя граница может достигнуть минимальную яркости 38 дБ. При исследовании на группе аналогичных приборов, вариабельность результатов не превышает 1 дБ. Так, если получен результат световосприятия объекта 34 дБ, то в отличие от рассмотренного на рис.1 примера с фотопическим уровнем яркости фона, вариабельность результатов не превышает 1 дБ.

При увеличении яркости объектов вариабельность менее 1 дБ.

Мезопический уровень яркости фона обеспечивает большую надёжность результатов и меньшую вариабельность результатов исследования.

На **рис.4** приведены границы изменения световосприятия при ужесточении установленных предельных отклонений яркости объектов и фона с +25%/-20% до +25% Lconst и $\pm 5\%$ Lst норм.

По изменениям границ световосприятия видно, что границы могут достигнуть значение яркости превышающие $40~\mathrm{д}$ Б.

При исследовании будет достигнута вариабельность световосприятия менее 1 дБ.

Для бо́льших значений пороговых уровней вариабельность существенно уменьшается.

ОСНОВНЫЕ ВЫВОДЫ

- 1) Для достижения сопоставимых результатов при проведении периметрии с использованием автоматических кинетических периметров, особенно данных на низких уровнях яркости, отметим следующее:
- необходима первоначальная **высокоточная юстировка номинальных уровней** яркости световых объектов и яркости фона;
- должна обеспечиваться **периодическая** проверка первоначальной установки номинальных уровней яркости световых объектов и фона;
- при проверке д**олжно быть использовано прецизионное оборудование** с нижним пределом измерения $0.001~\text{кд/m}^2\dots0.01~\text{кд/m}^2$ и погрешностью не более $\pm 1\%\dots\pm 2\%$ от измеряемой величины;
- самостоятельная и юстировка кинетических периметров обслуживающим персоналом лечебного учреждения не допускается.
- 2) <u>Статические автоматические периметры</u> имеют высокую надёжность и эксплуатационный ресурс (устанавливаемые световые объекты ориентированы на 50 тысяч часов непрерывной работы):
- в процессе эксплуатации не требуется отладка и юстировка приборов, нет необходимости привлечения для обслуживания дополнительного технического персонала;
- градуировка приборов осуществляется с использованием прецизионной аппаратуры с нижним пределом измерения $0.001~{\rm kg/m^2}$ и погрешностью не превышающей $\pm~2\%$ от измеряемого значения:
- автоматический статический прибор для исследования поля зрения «Периграф«ПЕРИ-КОМ» имеет оптимальные, проверенные длительной клинической практикой, эксплуатвционные характеристики и надёжность, легко осваивается средним медперсоналом, не имеет ограничений при проведении периметрических исследований любых контингентов пациентов в офтальмологической практике;
- производство автоматических статических периметров для исследования поля зрения «Периграф ПЕРИКОМ» лицензировано. Прибор имеет регистрационное удостоверение, декларацию и сертификат соответствия.